Abstract
Bonnet of a car, the upper surface of a pointed bullet and upper surface of the pointed part of an aircraft are typical examples of an upper horizontal surface of a paraboloid of revolution (uhspr). However, the flow of some fluids past these kinds of objects fit the description of Eyring-Powell fluid flow. Theoretical investigation of two-dimensional Eyring-Powell fluid flow over such object which is neither cone/wedge nor horizontal/vertical is investigated. It is assumed that the flow of Eyring-Powell fluid is induced by catalytic surface reaction and stretching fluid layers at the free stream. The numerical solutions of the governing equation are obtained using classical fourth order Runge-Kutta scheme together with shooting techniques. The impacts of the most important parameters on the flow are presented. It is concluded that the maximum velocity of the flow is ascertained when the flow is characterized as Newtonian fluid flow. On the surface of uhspr, rapid increase and suppress in the temperature distribution and concentration with an increase in the magnitude of one of the Eyring-Powell fluid parameters are guaranteed. A significant fall in the local skin friction coefficients is ascertained due to rise in the magnitude of thickness parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.