Abstract

This pioneering study focuses on the finite element analysis (FEA) of thermomechanical properties of shape memory polymer (SMP) wire ropes and their components under both small- and finite-sliding contact deformation. To validate the FEA, we need to validate both geometric modeling and non-linear material behavior. Owing to intricate geometry, as well as excessive wire interactions in the structure, this part is studied by simulating a 1 × 37 steel wire rope and then comparing it with existing experimental data. To evaluate the response of non-linear material behavior, we employ the available numerical results to model the thermomechanical property of an SMP rectangular bar under a uniaxial test and then verify both constrained and unconstrained recovery behavior. After rigorous validation, two configurations of 1 × 7 and 1 × 27 SMP cables are modeled based on the thermo-visco-hyperelastic constitutive framework for acrylate polymer systems. Upon exerting an axially tensile load on these 1 × 7 and 1 × 27 SMP wire ropes, the response of force and shape recovery, as well as the normal and shear stress distributions, are measured under constrained and unconstrained conditions. For a deeper physical understanding, the influences of different temperature rates (5 and 1 °C min−1), inter-wire sliding frictional coefficient (0.1–0.6), and multiple-shape programming on the stress-strain-temperature relations of these SMP cables are also investigated. Furthermore, based on optimizing two cable factors of diameter and helix angle, and using the design of experiments method, the specific energy of a 1 × 6 SMP cable is maximized. Under different thermomechanical loadings, this study tries to cast light on the remarkable features and possible potential applications of these newly developed SMP actuators which may foster unparalleled advancements in various industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.