Abstract
Reaction of (TBBP)AlMe⋅THF with [Cp*2 Zr(Me)OH] gave [(TBBP)Al(THF)-O-Zr(Me)Cp*2 ] (TBBP=3,3',5,5'-tetra-tBu-2,2'-biphenolato). Reaction of [DIPPnacnacAl(Me)-O-Zr(Me)Cp2 ] with [PhMe2 NH]+ [B(C6 F5 )4 ]- gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)-O-Zr(THF)Cp2 ]+ [B(C6 F5 )4 ]- (DIPPnacnac=HC[(Me)C=N(2,6-iPr2 -C6 H3 )]2 ). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40-47 kcal mol-1 ) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six-membered-ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal-Me-C angle that prevents synchronized bond-breaking and making. A more-likely pathway is dissociation of the Al-O-Zr complex into an aluminate and the active polymerization catalyst [Cp*2 ZrMe]+ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.