Abstract
Despite of recent improvements in silver paste technology, the open-circuit voltages $( V_{oc})$ of silicon solar cells with screen printed and firing-through silver contacts continue to be limited by the high recombination currents at the metal contacts $( J_{{0} {,met}})$. To maximize solar cell efficiencies, the contact resistance $( \rho_{c})$ and $J_{{0} {,met}}$ must be simultaneously minimised. In this study we investigated the origin of $J_{{0} {,met}}$ for screen printed silver pastes on $p^{+}$ and $n^{+}$ doped regions and correlate this with contact formation phases during the firing process. We show that, during the contact firing process, the $J_{{0} {,met}}$ significantly increases and even saturates to its final value at temperatures well below 700°C, which is a temperature range below that is needed for contact formation. The same is observed on both $p^{+}$ and $n^{+}$ diffused junctions with planar or random pyramids textured Si surfaces passivated by a SiO 2 /SiN x layer stack. This show that most of the metal induced recombination loses originates from the etching of the dielectric layers by the glass frit and less during the contact formation process where $\rho_{c}$ is minimised. Furthermore, we demonstrate that increasing the SiN x passivating layer thickness leads to a significant reduction in $J_{{0} {,met}}$, possibly due to an incomplete etching of dielectric layers under the contact, whereas the $\rho_{c}$ remain low and constant under optimum firing conditions. These findings could help design metallization pastes optimised to reduce dielectric etching, and hence $J_{{0} {,met}}$, without affecting $\rho_{c}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.