Abstract
Metal-enhanced oxidation (MEO) using ultrathin Ba layers on 4H-SiC surfaces was investigated by physical and electrical characterizations. We found that while comparable oxidation rates were enhanced for Si- and C-face surfaces even at a low temperature, significant surface and interface roughness were induced by initial MEO termed the incubation period. Depth profiling revealed that although most Ba atoms aggregated on the oxide surface, a tiny amount (∼1014 cm−2) remaining at the oxide interface was responsible for the following stable MEO reaction and the reduced interface state density with the drawbacks of degraded leakage current and breakdown characteristics of SiC-MOS devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.