Abstract

ABSTRACTMulticomponent adsorption of lead(II), cadmium(II) and manganese(II) by Nigerian Dijah-Monkin bentonite clay was investigated. The clay samples were characterized for elemental composition, cation exchange capacity and textural properties. Natural bentonite exhibits cation exchange capacity of 47.7 meq/100 g and specific surface area of 23.5 m2/g. Manganese(II) displays higher values of rate constant than lead(II) in multimetals adsorption. However, lead(II) is favorably adsorbed onto bentonite adsorbents at different concentrations studied. The multimetals adsorption onto bentonite clay samples is site selective and site specific. The pseudo-second-order kinetics model gave a better fit to the adsorption data, suggesting ion exchange and/or complex formation. The adsorption mechanism could be described by intraparticle diffusion with some restriction of metals diffusion due to film or boundary layer. Also, the multicomponent adsorption is endothermic and becomes more spontaneous as temperature increased from 303 to 338 K. Nigerian bentonite clay in its natural form is a promising adsorbent for multimetals removal in aqueous solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call