Abstract

Osimertinib mesylate is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor used to treat nonsmall-cell lung cancer. The objective was to understand in silico prediction and chemical-based stress testing of the osimertinib mesylate. A total of eight degradation products (DPs) were formed under chemical stress testing. An in silico tool viz., Zeneth predicted a higher percentage of DPs. The separation of all the DPs was achieved using reversed phase high-performance liquid chromatography, employing X-Bridge C18 column with ammonium acetate (pH adjusted to 7.50 with ammonia) and acetonitrile as mobile phase. The overall results showed it underwent significant degradation in acidic, alkaline, and oxidative conditions. In rest of the conditions, osimertinib mesylate was found to be stable or slight degradation was observed in photolytic condition. The structure of DPs was elucidated with a comparison of data generated from high-resolution mass spectrometry (HRMS) of osimertinib mesylate and its degradation products. To confirm the unambiguous regioisomers, one-dimensional (1D) and two-dimentional (2D) nuclear magnetic resonance studies were performed. Furthermore, the N-oxide position was assigned for the first time using the Meisenheimer rearrangement reaction in atmospheric pressure chemical ionization mode. Interestingly, an unusual reaction of DP2 formation was observed at alkaline conditions. In silico tools such as DEREK and Sarah predicted osimertinib mesylate and most of the DPs found to be structural alert for mutagenicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call