Abstract

Metal complexes have extensive applications in catalysis, however, the efficient evaluation of Lewis acidity of metal complexes is still a challenge. Herein, we report a method by using electrospray ionization mass spectrometry (ESI-MS) to evaluate the Lewis acidity of metal complexes in the presence of a reference Lewis base, in which the value of the Lewis acidity can be quantized by the bond dissociation energy (BDE) of the resultant Lewis acid-base pairs. Using this method, the Lewis acidity of tetradentate Schiff-base metal complexes (designated as salenMX), a class of common metal complexes in the homogeneous catalysis, was studied in detail. For the salenM(III)X complexes (M = Al, Cr, Fe, Co), the Lewis acidity tendency is Al > Cr > Fe > Co due to a strong affinity between the Al complex and the reference Lewis base while a weak affinity concerning on the Co complex. Additionally, the effect of ligand steric and electronic nature on the Lewis acidity was studied by using Co complex. Furthermore, density functional theory (DFT) was employed to calculate the BDE, which consists with the results obtained from ESI-MS. The ESI-MS method provides a convenient and efficient method for evaluating the Lewis acidity of metal complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call