Abstract

The competition of hydrogen, halogen and pnicogen bonding to the stability of the atmospheric complexes is interesting, especially where the molecules by the most abundant greenhouse effect in the atmosphere are subject of interest. In the present work, we have computationally studied the addition of H2O to the NF3 and CF2Cl2 molecules to reveal the electronic and structural features of the NF3-H2O and CF2Cl2-H2O complexes through DFT, MP2 and CCSD (T) methods. The interaction energies, geometry and electronic properties including charge transfer, energy gap, NEDA and AIM analyses of all the complexes were calculated to discuss the nature and strength of intermolecular interactions. The results indicate that the role of halogen bonding is more obvious than that of hydrogen and pnicogen bonding, and compared with the NF3, CF2Cl2 is more effectively stabilized by the H2O molecules. In the present work, we have studied the addition of H2O molecule to the NF3 and CF2Cl2 molecules to reveal the electronic and structural features of the NF3-H2O and CF2Cl2-H2O complexes through DFT, MP2 and CCSD (T) methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.