Abstract

Ethyl cellulose (EC)-based composite sponges were developed for oil spillage treatment. The EC sponge surface was decorated with helical carbon nanotubes (HCNTs) and molybdenum disulfide (MoS2) (1 phr) using the inside-out sugar templating method. The inside surface of a sugar cube was coated with HCNTs and MoS2. After filling the sugar cube pores with EC and the subsequent sugar leaching, the decorating materials presented on the sponge surface. The EC/HCNT/MoS2 sponge had a high level of oil removal based on its adsorption capacity (41.68 g/g), cycled adsorption (∼75–79 %), separation flux efficiency (∼85–95 %), and efficiency in oil/water emulsion separation (92–94 %). The sponge maintained adsorption capacity in acidic, basic, and salty conditions, adsorbed oil under water, and functioned as an oil/water separator in a continuous pump-assisted system. The compressive stress and Young's modulus of the EC sponge increased following its decoration using HCNTs and MoS2. The composite sponge was robust based on cycled compression and was thermally stable up to ∼120 οC. Based on the eco-friendliness of EC, the low loading of HCNTs and MoS2, and sponge versatility, the developed EC/HCNT/MoS2 sponge should be good candidate for use in sustainable oil adsorption and separation applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.