Abstract

The discovery of P-Glycoprotein (P-gp) inhibitors to block chemotherapy drugs efflux is considered an attractive treatment strategy for overcoming cancer multidrug resistance (MDR). Cell membrane biomimetic platform has emerged as a promising candidate method for screening small molecule P-gp inhibitors from natural products. However, randomly oriented cell membrane coating does not guarantee the inward-opening conformation of P-gp, limiting the precise screening of P-gp inhibitors. Herein, inside-out orientation extracellular vesicles camouflaged magnetic nanoparticles (IOVMNPs) were prepared to discover P-gp inhibitors with low toxicity and high efficiency from natural products. The orientation of extracellular vesicles on the surface of IOVMNPs was rigorously confirmed by immunogold electron microscopy and sialic acid quantification assay. Finally, two potential P-gp inhibitors, honokiol and magnolol, were captured by obtained IOVMNPs. The effect of MDR reversal in combination with chemotherapy drugs was further verified by pharmacological activity experiments. The inside-out orientation extracellular vesicles encapsulation strategy provides an effective tool for the discovery of novel P-gp inhibitors from nature products, thus further extending the application field of orientation assembly cell membrane biomimetic magnetic nanoparticles. This inside-out extracellular vesicles coating also proposes a new concept for the assembly of cell membrane biomimetic platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.