Abstract

As the global population approaches 10 billion by 2050, the critical need to ensure food security becomes increasingly pronounced. In response to the urgent problems posed by global population growth, our study adds to the growing body of knowledge in the field of alternative proteins, entomophagy, insect-based bioactive proteolysates, and peptides. It also provides novel insights with essential outcomes for guaranteeing a safe and sustainable food supply in the face of rising global population demands. These results offer insightful information to researchers and policymakers tackling the intricate relationship between population expansion and food supplies. Unfortunately, conventional agricultural practices are proving insufficient in meeting these demands. Pursuing alternative proteins and eco-friendly food production methods has gained urgency, embracing plant-based proteins, cultivated meat, fermentation, and precision agriculture. In this context, insect farming emerges as a promising strategy to upcycle agri-food waste into nutritious protein and fat, meeting diverse nutritional needs sustainably. A thorough analysis was conducted to evaluate the viability of insect farming, investigate insect nutrition, and review the techniques and functional properties of protein isolation. A review of peptide generation from insects was conducted, covering issues related to hydrolysate production, protein extraction, and peptide identification. The study addresses the nutritional value and global entomophagy habits to elucidate the potential of insects as sources of peptides and protein. This inquiry covers protein and hydrolysate production, highlighting techniques and bioactive peptides. Functional properties of insect proteins' solubility, emulsification, foaming, gelation, water-holding, and oil absorption are investigated. Furthermore, sensory aspects of insect-fortified foods as well as challenges, including Halal and Kosher considerations, are explored across applications. Our review underscores insects' promise as sustainable protein and peptide contributors, offering recommendations for further research to unlock their full potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.