Abstract
Previously, we reported that the majority of the Bemisia tabaci Mediterranean (MED) populations converged from two dominant genetic clusters (cluster 1 and 2) to one (cluster 2) during 1 year in greenhouse tomatoes in Korea. To find possible mechanisms for this phenomenon, we investigated the concurrent changes in resistance traits of the two clusters for three insecticide classes (organophosphate, pyrethroid, and neonicotinoid). Since the resistance mutation frequencies in regional samples were either high (i.e. the voltage-sensitive sodium channel L925I/T929V mutations and the F392 acetylcholinesterase 1 mutation) or zero (the nicotinic acetylcholine receptor R81T mutation), no meaningful correlation between the resistance allele frequency and genetic cluster was deduced. However, the actual resistance levels to all three insecticide classes were significantly higher in cluster 2 than in cluster 1, suggesting that cluster 2 has a higher resistance potential. Furthermore, thiamethoxam treatment to the mixed population of clusters 1 and 2 over three generations exhibited a strong tendency of population change from cluster 1 to cluster 2. Our results demonstrated that the insecticide resistance trait is one of the driving forces for rapid genetic cluster change in B. tabaci MED populations. © 2021 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.