Abstract
Insecticide resistance in house fly populations is a major problem faced by livestock producers worldwide. A survey of insecticide resistance levels and pyrethroid resistance allele frequencies in the United States was conducted in 2008–09, but little is known about how resistance levels have changed over the last 10 years. In addition, new target-site pyrethroid resistance alleles that confer high levels of resistance have been recently identified in the voltage-sensitive sodium channel, and their frequencies in field populations are unknown. Our aim in this study was to reassess the resistance status of house flies from select locations in the United States by examining resistance levels against commonly used insecticides and frequencies of known resistance alleles. House flies were collected from animal production facilities in five different states between 2016 and 2018. Resistance levels to three insecticides (permethrin, tetrachlorvinphos, and methomyl), representing three classes of insecticides (pyrethroids, organophosphates and carbamates) varied geographically and were lowest in the population collected from New Mexico, intermediate in the population collected from Utah, and greatest in the population from Kansas. The recently identified 1B pyrethroid resistance allele increased dramatically in frequency compared to previous reports, most notably in populations from Kansas and Maryland, indicating that it may already be widespread around the United States. Based on comparison with historical data, the population collected from Kansas represents one of the most highly permethrin resistant populations ever sampled. If the alleles responsible for this level of resistance spread, pyrethroids may be of limited use for house fly control in the United States in the near future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have