Abstract
BackgroundSelection pressure from continued exposure to insecticides drives development of insecticide resistance and changes in resting behaviour of malaria vectors. There is need to understand how resistance drives changes in resting behaviour within vector species. The association between insecticide resistance and resting behaviour of Anopheles gambiae sensu lato (s.l.) in Northern Ghana was examined.MethodsF1 progenies from adult mosquitoes collected indoors and outdoors were exposed to DDT, deltamethrin, malathion and bendiocarb using WHO insecticide susceptibility tests. Insecticide resistance markers including voltage-gated sodium channel (Vgsc)-1014F, Vgsc-1014S, Vgsc-1575Y, glutathione-S-transferase epsilon 2 (GSTe2)-114T and acetylcholinesterase (Ace1)-119S, as well as blood meal sources were investigated using PCR methods. Activities of metabolic enzymes, acetylcholine esterase (AChE), non-specific β-esterases, glutathione-S-transferase (GST) and monooxygenases were measured from unexposed F1 progenies using microplate assays.ResultsSusceptibility of Anopheles coluzzii to deltamethrin 24 h post-exposure was significantly higher in indoor (mortality = 5%) than outdoor (mortality = 2.5%) populations (P = 0.02). Mosquitoes were fully susceptible to malathion (mortality: indoor = 98%, outdoor = 100%). Susceptibility to DDT was significantly higher in outdoor (mortality = 9%) than indoor (mortality = 0%) mosquitoes (P = 0.006). Mosquitoes were also found with suspected resistance to bendiocarb but mortality was not statistically different (mortality: indoor = 90%, outdoor = 95%. P = 0.30). Frequencies of all resistance alleles were higher in F1 outdoor (0.11–0.85) than indoor (0.04–0.65) mosquito populations, while Vgsc-1014F in F0An. gambiae sensu stricto (s.s) was significantly associated with outdoor-resting behaviour (P = 0.01). Activities of non-specific β-esterase enzymes were significantly higher in outdoor than indoor mosquitoes (Mean enzyme activity: Outdoor = : 1.70/mg protein; Indoor = 1.35/mg protein. P < 0.0001). AChE activity was also more elevated in outdoor (0.62/mg protein) than indoor (0.57/mg protein) mosquitoes but this was not significant (P = 0.08). Human blood index (HBI) was predominantly detected in indoor (18%) than outdoor mosquito populations (3%).ConclusionsThe overall results did not establish that there was a significant preference of resistant malaria vectors to solely rest indoors or outdoors, but varied depending on the resistant alleles present. Phenotypic resistance was higher in indoor than outdoor-resting mosquitoes, but genotypic and metabolic resistance levels were higher in outdoor than the indoor populations. Continued monitoring of changes in resting behaviour within An. gambiae s.l. populations is recommended.
Highlights
Selection pressure from continued exposure to insecticides drives development of insecticide resist‐ ance and changes in resting behaviour of malaria vectors
Insecticide use has been associated with widespread physiological resistance and behavioural changes of malaria vectors which may contribute in maintaining residual malaria transmission [4, 5]
In settings where indoor residual spraying (IRS) and Long-lasting insecticidal net (LLIN) were extensively deployed, highly anthropophilic, late-indoor biting and indoor resting vectors have switched to animal feeding and outdoor human feeding following the deployment of vector control activities [8, 9]
Summary
Selection pressure from continued exposure to insecticides drives development of insecticide resist‐ ance and changes in resting behaviour of malaria vectors. IRS and LLINs are meant to provoke a knock down or mortal effect on vectors upon contact, targeting their classical anthropophilic (human feeding), late night indoor biting (endophagic) and indoor resting (endophilic) behaviours [6, 7]. This applies to the most efficient malaria vectors, namely Anopheles arabiensis, Anopheles coluzzii, Anopheles gambiae sensu stricto (s.s.) and Anopheles funestus. Vector populations have adapted to early and early-morning biting, targeting a time when humans are not protected by LLINs [14]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.