Abstract

BackgroundInsecticide resistance in malaria vector mosquitoes presents a serious problem for those involved in control of this disease. South Africa experienced a severe malaria epidemic during 1999/2000 due to pyrethroid resistance in the major vector Anopheles funestus. Subsequent monitoring and surveillance of mosquito populations were conducted as part of the malaria vector control programme.MethodsA sample of 269 Anopheles funestus s.l. was collected in Mamfene, northern KwaZulu-Natal, using exit window traps in pyrethroid sprayed houses between May and June 2005. Mosquitoes were identified to species level, assayed for insecticide susceptibility, analysed for Plasmodium falciparum infectivity and blood meal source.ResultsOf the 220 mosquitoes identified using the rDNA PCR method, two (0.9%) were An. funestus s.s. and 218 (99.1%) Anopheles parensis. Standard WHO insecticide susceptibility tests were performed on F1 progeny from wild caught An. parensis females and a significant survival 24 h post exposure was detected in 40% of families exposed to 0.05% deltamethrin. Biochemical analysis of F1 An. parensis showed no elevation in levels/activity of the detoxifying enzyme systems when compared with an insecticide susceptible An. funestus laboratory strain. Among the 149 female An. parensis tested for P. falciparum circumsporozoite infections, 13.4% were positive. All ELISA positive specimens (n = 20) were re-examined for P. falciparum infections using a PCR assay and none were found to be positive. Direct ELISA analysis of 169 blood meal positive specimens showed > 75% of blood meals were taken from animals. All blood fed, false positive mosquito samples for the detection of sporozoites of P. falciparum were zoophilic.ConclusionThe combination of pyrethroid resistance and P. falciparum false-positivity in An. parensis poses a problem for vector control. If accurate species identification had not been carried out, scarce resources would have been wasted in the unnecessary changing of control strategies to combat a non-vector species.

Highlights

  • Insecticide resistance in malaria vector mosquitoes presents a serious problem for those involved in control of this disease

  • Of the 13 % of females that tested positive for the presence of P. falciparum sporozoites, 65 % (13/20) were blood fed

  • Identification of blood meal source of those females by direct ELISA showed that 53.85 % were positive for bovine blood, 38.46 % for sheep blood and 7.69 % had a mixed blood meal source

Read more

Summary

Introduction

Insecticide resistance in malaria vector mosquitoes presents a serious problem for those involved in control of this disease. South Africa experienced a severe malaria epidemic during 1999/2000 due to pyrethroid resistance in the major vector Anopheles funestus. "An. rivulorum-like" was added to this group based on molecular sequencing data [3]. These species show morphological overlap, some species can be identified on egg and larval characteristics [1,2]. An. funestus is the only member of the group that is recognized as an important vector of malaria in Africa, with An. rivulorum only a minor vector at a localized site in Tanzania [4]. Anopheles vaneedeni was experimentally infected in the laboratory with Plasmodium falciparum but has not been implicated in malaria transmission in nature [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.