Abstract

BackgroundIn line with the Global trend to improve malaria control efforts a major campaign of insecticide treated net distribution was initiated in 1999 and indoor residual spraying with DDT or pyrethroids was reintroduced in 2000 in Zambia. In 2006, these efforts were strengthened by the President's Malaria Initiative. This manuscript reports on the monitoring and evaluation of these activities and the potential impact of emerging insecticide resistance on disease transmission.MethodsMosquitoes were captured daily through a series of 108 window exit traps located at 18 sentinel sites. Specimens were identified to species and analyzed for sporozoites. Adult Anopheles mosquitoes were collected resting indoors and larva collected in breeding sites were reared to F1 and F0 generations in the lab and tested for insecticide resistance following the standard WHO susceptibility assay protocol. Annual cross sectional household parasite surveys were carried out to monitor the impact of the control programme on prevalence of Plasmodium falciparum in children aged 1 to 14 years.ResultsA total of 619 Anopheles gambiae s.l. and 228 Anopheles funestus s.l. were captured from window exit traps throughout the period, of which 203 were An. gambiae malaria vectors and 14 An. funestus s.s.. In 2010 resistance to DDT and the pyrethroids deltamethrin, lambda-cyhalothrin and permethrin was detected in both An. gambiae s.s. and An. funestus s.s.. No sporozoites were detected in either species. Prevalence of P. falciparum in the sentinel sites remained below 10% throughout the study period.ConclusionBoth An. gambiae s.s. and An. funestus s.s. were controlled effectively with the ITN and IRS programme in Zambia, maintaining a reduced disease transmission and burden. However, the discovery of DDT and pyrethroid resistance in the country threatens the sustainability of the vector control programme.

Highlights

  • Malaria vector control activities are substantially increasing in many malaria endemic countries [1], with some countries considering elimination [2]

  • Indoor Residual Spraying (IRS) and Insecticide Treated Nets (ITNs) form the backbone of these activities and both have been proven as excellent vector control strategies [3]

  • The number of insecticides recommended for both methods is severely restricted, monitoring and management of insecticide resistance within the control programme is essential if control is to be maintained [4]

Read more

Summary

Introduction

Malaria vector control activities are substantially increasing in many malaria endemic countries [1], with some countries considering elimination [2]. Indoor Residual Spraying (IRS) and Insecticide Treated Nets (ITNs) form the backbone of these activities and both have been proven as excellent vector control strategies [3]. Zambia first initiated IRS with DDT in the 1950s, at the same time malaria became a notifiable disease [5]. In line with the Global trend to improve malaria control efforts a major campaign of insecticide treated net distribution was initiated in 1999 and indoor residual spraying with DDT or pyrethroids was reintroduced in 2000 in Zambia. In 2006, these efforts were strengthened by the President’s Malaria Initiative This manuscript reports on the monitoring and evaluation of these activities and the potential impact of emerging insecticide resistance on disease transmission

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call