Abstract

<abstract> This paper concerns the input-to-state stability problem of delayed reaction-diffusion neural networks with multiple impulses. After reformulating the neural-network model in term of an abstract impulsive functional differential equation, the criteria of input-to-state stability are established by the direct estimate of mild solution and an integral inequality with infinite distributed delay. It shows that the input-to-state stability of the continuous dynamics can be retained under certain multiple impulsive disturbance and the unstable continuous dynamics can be stabilised by the multiple impulsive control, if the intervals between the multiple impulses are bounded. The numerical simulation of two examples is given to show the effectiveness of theoretical results. </abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.