Abstract

AbstractMarkov Chain Monte Carlo (MCMC) methods are used to estimate a seemingly unrelated regression (SUR) system of input demand functions for U.S. agriculture. Our demand functions have flexible forms and allow for nonrandom technical inefficiency. Concavity constraints are imposed at individual data points, and the distributions of measures of relative technical efficiency are constrained to the unit interval. Results are evaluated in terms of characteristics of the posterior distributions of parameters, measures of relative technical efficiency, and other nonlinear functions of the parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.