Abstract

An inverse first order reliability method (FORM) is presented to solve the safety factors for the in-plane creep stability of concrete filled steel tubular (CFST) arches. In the inverse analysis, the safety factors with or without considering the time-dependent behavior of concrete are introduced into limit state equations for the in-plane stability design of CFST arches. For different target reliability indices and steel ratios, the time-independent and time-dependent safety factors are solved. The results show that the inverse FORM is of good efficiency and applicability. The target reliability indices have little effect on the safety factors for the creep stability of CFST arches. The effects of steel ratios are significant which should be considered in design. For the commonly used steel ratios of CFST arches, the in-plane safety factors for creep stability range from 1.17 to 1.43.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call