Abstract
Lasing is reported for ridge-waveguide devices processed from a 40-stage InP-based quantum cascade laser structure grown on a 6-inch silicon substrate with a metamorphic buffer. The structure used in the proof-of-concept experiment had a typical design, including an Al0.78In0.22As/In0.73Ga0.27As strain-balanced composition, with high strain both in quantum wells and barriers relative to InP, and an all-InP waveguide with a total thickness of 8 µm. Devices of size 3 mm x 40 µm, with a high-reflection back facet coating, emitted at 4.35 µm and had a threshold current of approximately 2.2 A at 78 K. Lasing was observed up to 170 K. Compared to earlier demonstrated InP-based quantum cascade lasers monolithically integrated onto GaAs, the same laser structure integrated on silicon had a lower yield and reliability. Surface morphology analysis suggests that both can be significantly improved by reducing strain for the active region layers relative to InP bulk waveguide layers surrounding the laser core.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.