Abstract

We report the experimental results of a 40-stage InP-based quantum cascade laser (QCL) structure grown on a 6-inch GaAs substrate with metamorphic buffer (M-buffer). The laser structure’s strain-balanced active region was composed of Al0.78In0.22As/In0.73Ga0.27As and an all-InP, 8 μm-thick waveguide. The wafer was processed into ridge-waveguide chips (3mm x 30 μm devices) with lateral current injection scheme. Devices with high reflection coating delivered power in excess of 200 mW of total peak power at 78K, with lasing observed up to 230K. Preliminary reliability testing at maximum power showed no sign of performance degradation after 200 minutes of runtime. Measured characteristic temperatures of T0 ≈ 460 K and T1 ≈ 210 K describes the temperature dependence for threshold current and slope efficiency, respectively, in the range from 78K to 230K. Partial high reflection coating was used on the front facet to extend the lasing range up to 303K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call