Abstract

This paper reviews recent advances in the design and performance of our original InP- and GaAs-based plasmonic high-electron-mobility transistors (HEMTs) for ultrahighly-sensitive terahertz (THz) sensing and imaging. First, the fundamental theory of plasmonic THz detection is briefly described. Second, single-gate HEMTs with parasitic antennae are introduced as a basic core device structure, and their detection characteristics and sub-THz imaging potentialities are investigated. Third, dual-grating-gate (DGG)-HEMT structures are investigated for broadband highly sensitive detection of THz radiations, and the record sensitivity and the highly-sensitive THz imaging are demonstrated using the InP-based asymmetric DGG-HEMTs. Finally, the obtained results are summarized and future trends are addressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call