Abstract

Abstract The main causes of poor performance of cement-treated crushed stones (CTCS) pavement layers are material-related heterogeneity, porosity, and brittle cementitious matrix, leading to fast fatigue degradation. Seeking to improve CTCS mechanical properties and structural response it was studied different grading curves such as DER-SP, EN 14227-1 CBGM 2 and RCC-ACI were studied. The aim of the laboratory study was to rank and select among the classical particle size distribution models like Talbot & Richart, and analytical models as compressible packing model – CPM, the best grading curve which was capable of producing mixtures with the best aggregate interlocking and improved mechanical resistances. The effect of cement content (4% and 5%) as well as the potential of using silica fume in suspension (percentages of 5, 7 and 10% of cement mass) to improve the interfacial transition zone were evaluated. It was found that CPM is a powerful tool for aggregates ranking aggregates and designing well-graded mixtures like CTCS; the CBGM 2 EN 14227-1 mean curve achieved the best packing density. The effect of increasing the cement content from 4 to 5% in terms of mechanical strength has the same result as the addition of 7% of silica fume in mixtures with 4% cement. Eventually, mixtures with 5% cement and 10% silica fume showed modulus of elasticity similar to traditional CTCS; nonetheless, the HP-CTCS (high performance CTCS) split tensile strength was significantly higher (about 28%), leading to a lower Et,sp/fct,sp relationship, which is a highly positive outcome to improve mechanical durability of this innovative dry compacted concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call