Abstract

BackgroundThe performance of 18 routine chemical detection methods was evaluated by the sigma (σ) metric, and Westgard Sigma rules with run size were used to establish internal quality control (IQC) standards to reduce patient risks.Materials and methodsExternal quality assessment (EQA) and internal quality control data from 18 assays in a biochemical laboratory were collected from January to June 2020. The sigma values of each assay were calculated, based on the bias, total error allowable, and coefficient of variation, appropriate quality control rules were selected. According to the quality goal index, the main causes of poor performance were determined to guide quality improvement.ResultsAt IQC material level 1, seven of the 18 assays achieved five sigma (excellent), and five assays (UA, Crea, AMY, TC and Na) showed world‐class performance. At IQC material level 2, 14 of the 18 assays achieved 5 sigma (excellent), and thirteen assays (UA, ALT, CK, Crea, AMY, K, AST, ALP, Na, LDH, Mg, TC and GGT) showed world‐class performance. The quality goal index (QGI) was calculated for items with analysis performance <5 sigma, and the main causes of poor performance were determined to guide quality improvement.ConclusionsWestgard sigma rules with run size are an effective tool for evaluating the performance of biochemical assays. These rules can be used to more simply and intuitively select the quality control strategy of related items and reduce the risk to patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call