Abstract
The rat parotid salivary gland shows marked alterations in phospholipid metabolism when stimulated by certain agonists. These agonists are those which cause cellular Ca mobilization by activation of muscarinic, α-adrenergic or peptidergic (substance P) receptors. The phospholipid changes apparently reflect the activation of a phosphoinositide-phosphatidic acid cycle, the precise pathways of which are not known with certainty. The observed effects include (1) an increased labelling by 32PO4 of phosphatidylinositol and phosphatidic acid, (2) net synthesis of phosphatidic acid, (3) net breakdown of phosphatidylinositol and phosphatidylinositol-4,5-bisphosphate. These effects apparently do not require the presence of extracellular Ca or the release of internal Ca and cannot be produced by the artificial introduction of Ca into the cytosol with Ca ionophores. These findings are consistent with the view that a receptor-mediated alteration in phosphoinositide metabolism represents an early step in the stimulus-response pathway in the parotid acinar cell. It has been suggested that phosphatidic acid synthesis might be of central importance in mediating Ca influx and that PIP2 breakdown might play a role in activation of Ca release. Evidence for these latter ideas is for the present largely circumstantial.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have