Abstract

Traditional inorganic X-ray scintillators are designed based on several representative metal ions (e.g., Tl+, Pb2+, Bi3+) with highly emissive nature and high atomic number aiming at the outstanding radiation stopping power. The combination of these two features gives rise to a high energy conversion efficiency from X-ray to visible emission, which is a prerequisite for an ideal scintillator and is currently one of the major limits for the further development of this field. Inspired by our recent observation on the intrinsic scintillating phenomenon in the heaviest naturally occurring element uranium, we report here a family of inorganic scintillators through combination of uranyl ions with diverse oxoanion groups (i.e., borate, phosphate, molybdate, germanate, etc.). Na2UO2(MoO4)2·(H2O) (UMO) is selected as a prototype of a uranyl-bearing inorganic scintillator, to show its intrinsic advantages in the X-ray excited luminescence (XEL), strong X-ray attenuation coefficient (XAC), reduced afterglow, and decent radiation stability, as compared with one of the most important commercial inorganic scintillators CsI:Tl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.