Abstract
A novel approach for improving the thermal and dimensional stability of a polymer based separator is investigated. The surface of the micropores in the polyolefin based separator is fully covered by a thin layer of SiO2 deposited by the chemical vapor deposition method. Through this new process, the thermal and dimensional stability of the microporous separators is greatly enhanced, thus allowing the commercialization of polymer based separators for large sized battery systems. The morphology of the modified separators as a function of the thickness of the inorganic layer is considered to be a key factor for the optimization of their thermal and dimensional stability without sacrificing their ionic conductivity for the sake of the cell performance. At the optimum thickness of the thin and conformal layer of SiO2, we obtain a polymer separator which is highly stable at high temperature, even above the melting point of the polymer membrane, with satisfactory cell performance, such as its ion conductivity, C-rate and cycle life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.