Abstract
The effect of inorganic phosphate (Pi) on Ca2+ -activation of actomyosin ATPase activity and force in permeabilized (skinned) single extensor digitorum longus (EDL) and soleus muscle fibers of the rat were investigated. Increasing concentrations of Pi decreased force more than ATPase rate at all Ca2+ concentrations and this effect was more pronounced at submaximal Ca2+ -activation. Increasing Pi caused both the normalized pCa-ATPase and pCa-force relationship to be shifted to a higher Ca2+ concentration. At all Ca2+ concentrations ATPase was activated at a lower concentration of Ca2+ than force and this difference in Ca2+ concentration required for the activation of ATPase and force was greater in fast-twitch (EDL) than in slow twitch (soleus) muscle. Soleus muscle pCa-ATPase and pCa-force curves were more sensitive to Ca2+ (pCa50 = 5.97 and 5.89, respectively) than EDL (pCa50 = 5.68 and 5.54, respectively). Finally the shape of the pCa-ATPase and pCa-force curves was similar and not affected by Pi. Analysis shows that Pi increases the rate of dissociation of force generating myosin cross-bridges (ratio of ATPase/force (g(app at all Ca2+ concentration, especially at submaximal Ca2+ -activation levels. Pi effects on g(app) are discussed in terms Pi interacting with the isomerization high force AM*ADP states to form high force transitional AM*ADP*Pi* states which facilitate the dissociation of ADP from AM*ADP. Increasing Ca2+ during Ca2+ -activation of the fibers is associated with a progressive decrease in rate of dissociation of force generating myosin cross-bridges g(app).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have