Abstract
Ruminal microbes catabolise feed carbohydrates mainly into SCFA, methane (CH4), and carbon dioxide (CO2), with predictable relationships between fermentation end products and net microbial increase. We used a closed in vitro batch culture system, incubating grass and maize silages, and measured total gas production at 8 and 24 h, as well as the truly degraded substrate, the net production of SCFA, CH4, and microbial biomass at 24 h, and investigated the impact of silage type and inoculum microbial mass on fermentation direction. Net microbial yield was negatively correlated with total gas at 8 h (P < 0•001), but not at 24 h (P = 0•052), and negatively correlated with CH4 production (P < 0•001). Higher initial inoculum microbial mass was related to a lower net microbial yield (P < 0•001) but a higher CH4 production (P < 0•001). A significant difference between grass silage and maize silage was detected within the context of these relationships (P < 0•050). The metabolic hydrogen (2H) recovery was 102.8 ± 12.3 % for grass silages and 118.8 ± 13.3% for maize silages. Overall, grass silages favoured more substrate conversion to microbial biomass and less to fermentation end products than maize silage. Lower inoculum microbial mass facilitated more microbial growth and, because of the 2H sink by microbial synthesis, decreased CH4 production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.