Abstract

The work is devoted to the development of an innovative technology of stamping from low-carbon steel for small-size liner blanks. The sequence of punching transitions includes a cold back extrusion operation, two cold drawing operations with thinning, and a cold crimping operation. Simulation with the use of the finite element method established the forces and specific forces during operations, the thermal effect during shaping, the shape and size of semi-finished products with distributions of the intensity of deformations. An elastoplastic metal model was used, which made it possible to reveal the deformation forces, tool extraction from deformed semifinished products and the effort to remove semifinished products from the dies. A hollow semi-finished product is obtained by reverse extrusion. The possibility of carrying out the first drawing operation with thinning through two sequentially located dies with the formation of a hole in the bottom part is shown. After this operation, annealing of the semi-finished product is required to restore plasticity. In the second operation, thinning stretching. The shape and dimensions of the wall of the semi-finished product after the second drawing, the distribution of the intensity of deformations in it are determined from the condition of reaching the final dimensions and mechanical properties of the sleeve blank at the last crimping operation. For this, the deformations obtained as a result of the second drawing are taken into account when modeling the crimp. For each transition of stamping, a construction of stamping equipment has been developed. The proposed technology for stamping a sleeve blank can be implemented on a universal pressing equipment, has a high productivity due to a reduction in the number of transitions and minimizes mechanical processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call