Abstract
Virtual prototypes have been appealing in the early design stage of computer aided tolerancing, because it is less expensive to evaluate and modify tolerances numerically. Derived from the machining processes, form uncertainties are simulated, controlled and analyzed in virtual prototypes using parametric and intuitive surface patches. The generation of a complete virtual prototype often involves combining surface patches with different patterns to one complete model. To overcome possible geometric defects in this process, a surface merging method is proposed in this paper. Skin Model Shapes is first introduced as the geometric foundation. The whole part surface is segmented based on the geometric shape and machining type. Then point-based patches are generated accordingly. Interpolation implicit surfaces based on radial basis function networks are constructed in patch boundaries based on spatial-constrained homogeneous transformation matrices. A feature augmentation process is then introduced to preserve processing features after resampling the blend patch. The proposed method is proved to be efficient in feature retaining as well as surface smoothing, through numerical experiments and analysis on an example mechanical part. The results show that the generated virtual prototype would become 62.5% more smooth while retaining a 91.6% feature similarity after using the proposed method. Moreover, the proposed method could preserve 174% more features at a cost of 9.0% smoothness than using a conventional modified trimmed filtering method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have