Abstract
Fluoride and its constituents in soil affect plant growth and public health. In this study, soil fluoride was measured for the semi-arid regions in southern India, using Sentinel-1 data in conjunction with the dual polarimetric saline-associated fluoride model (also known as fluoride model). A loss angle was estimated from laboratory-based dielectric components of soil samples with strong electrical conductivity under high and low fluoride conditions. The conductivity loss angle and real and imaginary dielectric constants were used to study fluoride salt's dielectric behavior. The imaginary dielectric component sensitive to dielectric loss could predict fluoride across large areas over time. This was statistically analyzed with R2 = 0.86, RMSE = 1.90, and bias = 0.35 showing a promising depiction that C-band SAR data can distinguish fluoride levels over varied clay soil and soil with varying vegetation development. Moreover, the association between biomass and simulated fluoride helped to identify fluoride-tolerant and non-tolerant crops. The study found that Sorghum and Oryza sativa tolerate saline-associated fluoride, whereas Peanut and Allium do not. Furthermore, the model successfully retrieves fluoride from saline salts based on tangent loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.