Abstract

Background: For decades, regenerative medicine and dentistry have been improved with new therapies and innovative clinical protocols. The aim of the present investigation was to evaluate through a critical review the recent innovations in the field of bone regeneration with a focus on the healing potentials and clinical protocols of bone substitutes combined with engineered constructs, growth factors and photobiomodulation applications. Methods: A Boolean systematic search was conducted by PubMed/Medline, PubMed/Central, Web of Science and Google scholar databases according to the PRISMA guidelines. Results: After the initial screening, a total of 304 papers were considered eligible for the qualitative synthesis. The articles included were categorized according to the main topics: alloplastic bone substitutes, autologous teeth derived substitutes, xenografts, platelet-derived concentrates, laser therapy, microbiota and bone metabolism and mesenchymal cells construct. Conclusions: The effectiveness of the present investigation showed that the use of biocompatible and bio-resorbable bone substitutes are related to the high-predictability of the bone regeneration protocols, while the oral microbiota and systemic health of the patient produce a clinical advantage for the long-term success of the regeneration procedures and implant-supported restorations. The use of growth factors is able to reduce the co-morbidity of the regenerative procedure ameliorating the post-operative healing phase. The LLLT is an adjuvant protocol to improve the soft and hard tissues response for bone regeneration treatment protocols.

Highlights

  • In recent years, the bone regeneration procedure for implant-supported rehabilitations gained increased predictability due to innovative biomaterials, new generation bone grafts and substitutes and novel adjuvant therapies able to increase the osseointegration, the new bone formation and substitution, promote the bone remodeling and decrease the post-operative co-mobility and healing period

  • Zwingenberger et al reported to Yamada et al that HA with HA/β-TCP 75/25% mix is not completely reabsorbed, but β-TCP has a higher solubility than HA/β-TPC 25/75% but HA/β-TPC 25/75% had better osteoclastic resorption [56,57]

  • Ortiz-Puigpelat et al reported that HA/TCP 50% ratio is more appropriate in bone regeneration for the percentage of residual material and new newly formed bone after 12–24 weeks [58]

Read more

Summary

Introduction

The bone regeneration procedure for implant-supported rehabilitations gained increased predictability due to innovative biomaterials, new generation bone grafts and substitutes and novel adjuvant therapies able to increase the osseointegration, the new bone formation and substitution, promote the bone remodeling and decrease the post-operative co-mobility and healing period. Age-related degenerative and periodontal diseases were visibly connected to a general degenerative metabolic state in conjunction with systemic dysbiosis involving the oral cavity and the intestinal compartment These conditions represent the cause of an increased degree of loss and wear of both implants and prostheses. Conclusions: The effectiveness of the present investigation showed that the use of biocompatible and bio-resorbable bone substitutes are related to the high-predictability of the bone regeneration protocols, while the oral microbiota and systemic health of the patient produce a clinical advantage for the long-term success of the regeneration procedures and implant-supported restorations. The LLLT is an adjuvant protocol to improve the soft and hard tissues response for bone regeneration treatment protocols

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call