Abstract

The relationship between the intrinsic properties of seven different types of fly ash and the compressive strength of the resulting geopolymers was investigated. A comprehensive examination of the effect of chemical and mineralogical compositions, particle size distribution, on the compressive strength of the fly ash-based geopolymers were performed. Results revealed that particle size distribution had a more significant impact on reaction activity than amorphous phase content or average particle size alone. Therefore, a novel concept of 'reaction volume' based on the geopolymerization reaction mechanism was proposed, which reveals a high correlation between the reactivity of fly ash and the compressive strength of geopolymers, thereby enhancing the predictability of the process. The degree of reactivity, formulated through the integration of reaction volume and amorphous silica-aluminum content, was identified as a robust predictor of compressive strength, which can serve as a crucial tool for evaluating fly ash for the production of alkali-activated materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.