Abstract

This work reports on the growth by molecular beam epitaxy and characterization of InN/InGaN multiple quantum wells (MQWs) emitting at 1.5 μm. X-ray diffraction (XRD) spectra show satellite peaks up to the second order. Estimated values of well (3 nm) and barrier (9 nm) thicknesses were derived from transmission electron microscopy and the fit between experimental data and simulated XRD spectra. Transmission electron microscopy and XRD simulations also confirmed that the InGaN barriers are relaxed with respect to the GaN template, while the InN MQWs grew under biaxial compression on the InGaN barriers. Low temperature (14 K) photoluminescence measurements reveal an emission from the InN MQWs at 1.5 μm. Measurements as a function of temperature indicate the existence of localized states, probably due to InN quantum wells’ thickness fluctuations as observed by transmission electron microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.