Abstract

The adult brain is organized into distinct functional networks, forming the basis of information processing and determining individual differences in behavior. Is this network organization genetically determined and present at birth? Here, we use unsupervised learning to uncover intrinsic functional brain organization using resting-state connectivity from a large cohort of neonates (Developing Human Connectome Project). We identified a set of symmetric, hierarchical, and replicable networks: sensorimotor, visual, default mode, ventral attention, and high-level vision. We also quantified neonate individual variability, finding low variability for sensorimotor, but high for ventral attention networks. These neonate networks resembled adult networks (Yeo et al., 2011), but frontoparietal and limbic networks found in adults were indiscernible in neonates. Finally, differential gene expression provided a potential explanation for the emergence of these distinct networks. Our results reveal the basic proto-organization of cortex at birth, but indicate a role for maturation and experience in developing adult-like functional brain organization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.