Abstract
Nasal mucosal explant (NEs) cultured at an air–liquid interface mimics in vivo conditions more accurately than monolayer cultures of respiratory cell linesor primary cells cultured in flat-bottom microtiter wells. NEs might be relevant for studies of host-pathogen interactions and antiviral immune responses after infection with respiratory viruses, including influenza and corona viruses.Pigs are natural hosts for swine influenza A virus (IAV) but are also susceptible to IAV from humans, emphasizing the relevance of porcine NEs in the study of IAV infection. Therefore, we performed fundamental characterization and study of innate antiviral responses in porcine NEs using microfluidic high-throughput quantitative real-time PCR (qPCR) to generate expression profiles of host genes involved in inflammation, apoptosis, and antiviral immune responses in mock inoculated and IAV infected porcine NEs.Handling and culturing of the explants ex vivo had a significant impact on gene expression compared to freshly harvested tissue. Upregulation (2–43 fold) of genes involved in inflammation, including IL1A and IL6, and apoptosis, including FAS and CASP3, and downregulation of genes involved in viral recognition (MDA5 (IFIH1)), interferon response (IFNA), and response to virus (OAS1, IFIT1, MX1) was observed. However, by comparing time-matched mock and virus infected NEs, transcription of viral pattern recognition receptors (RIG-I (DDX58), MDA5 (IFIH1), TLR3) and type I and III interferons (IFNB1, IL28B (IFNL3)) were upregulated 2–16 fold in IAV-infected NEs. Furthermore, several interferon-stimulated genes including MX1, MX2, OAS, OASL, CXCL10, and ISG15 was observed to increase 2–26 fold in response to IAV inoculation. NE expression levels of key genes involved in antiviral responses including IL28B (IFNL3), CXCL10, and OASL was highly comparable to expression levels found in respiratory tissues including nasal mucosa and lung after infection of pigs with the same influenza virus isolate.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have