Abstract

Most investigations on phase inversion (PI) of resins upon addition of water have been carried out by dynamic light scattering (DLS), torque, and viscosity measurements. The main problem, however, is analytic discontinuity due to sample removal and a changing matrix due to dilution during the preparation of the aqueous resin dispersions. This work presents Photon Density Wave (PDW) spectroscopy as a tool for the inline characterization of the acetone process for an acrylic copolymer with high acrylic acid (AA) content. PDW spectroscopy revealed different trends for optical properties compared to torque during water feed. Also the absence of PI due to dissolution of copolymer in the solvent/water mixture is observed by PDW spectroscopy. PI for the investigated copolymer did not occour during water feed but during removal of solvent. Different feeding rates of water gave similar trends while a change in temperature and degree of AA neutralization led to changes in optical properties and torque. Thermal processing showed that the optical properties of mixtures prior and after removal of solvent were completely different caused by changes of solubility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.