Abstract
The field of printed electronics for highly integrated circuits and energy devices demands very fine and highly conductive electric interconnections. In this study, conductive lines having a high cross-sectional aspect ratio were printed via the inkjet printing of Ag nanoparticle inks assisted by a laser-induced selective surface wetting technique: a hydrophobic layer of self-assembled monolayer-treated ZnO nanorods was coated on a glass substrate and selectively ablated by a laser to form micro-channels for the inkjet, whose surface energy changed from 36.3 mJ/m2 to 51.5 mJ/m2 before and after the laser irradiation. With the varying width of the laser-ablated channels and pitch of jetted ink drops, the 3D shapes of the printed silver lines were measured to investigate their effects on the widths, heights, and uniformities of the printed patterns. The results showed that the present technique realized a uniform line of 35 μm width and 0.46 μm average thickness, having an aspect ratio of 0.013, which is 7.6 times higher than that printed on bare glass.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have