Abstract
While electroless nickel plating is considered as a promising candidate for fabrication of metallized polymer composite membranes with high performance, it suffers from problems of complex and high-cost pretreatment procedure, hindering its large-scale implementations. It is hypothesized that, inkjet printing integrated with electroless plating (ELP) can serve as a facile and economical membrane fabrication method to overcome above problems. The new method proposed in this study was processed by inkjet printing silver ions and pyrrole inks as catalytic layer followed by electroless Ni deposition on polypropylene (PP) membrane surface. Successful modification was verified by characterizing the surface morphology and elemental compositions of the membranes. In comparison to the pristine PP membrane, the PPy-Ag/Ni modified membrane demonstrated lower surface resistance (2.3 Ω), better hydrophilicity (44.9°) and higher pure water flux (1135.1 L m−2 h−1). When applying an external electric field (10.0 V cm−1), the average flux of the PPy-Ag/Ni membrane for yeast filtration increased from 107.8 to 137.7 L m−2 h−1, which was about 2.0 times higher than that of the pristine PP membrane. Meanwhile, the PPy-Ag/Ni membrane possessed a maximum flux recover rate when applied with an external electrical field. This work provided a facile and efficient approach for fabrication of composite conductive membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.