Abstract

Radio frequency identification (RFID) provides great potential for different Internet of Things (IOT) applications. In the future, material choices in these IOT devices will have a huge effect on the environment and thus use of renewable materials is a growing trend. In this paper, passive ultra high frequency (UHF) RFID tags were inkjet-printed directly on wood, paper, and cardboard substrates, and their performance was evaluated by measuring two key properties: threshold power and theoretical read range. According to our measurements, the tags on wood showed read ranges of 7 - 8 meters, the tags on cardboard exhibited read ranges of 4 - 7 meters, and the tags printed on paper showed read ranges of 2 - 7 meters through the global UHF RFID band. According to these results, the performance of these inkjet-printed UHF RFID tags is sufficient for many IOT devices and potential applications e.g. in construction and packaging industry.

Highlights

  • Internet of Things (IOT) is a conceptual vision to connect everyday things and all kinds of devices in order to create a ubiquitous computing world

  • The tags on wood showed read ranges of 7 - 8 meters, the tags on cardboard exhibited read ranges of 4 - 7 meters, and the tags printed on paper showed read ranges of 2 - 7 meters through the global ultra high frequency (UHF) Radio frequency identification (RFID) band

  • The performance of these inkjet-printed UHF RFID tags is sufficient for many IOT devices and potential applications e.g. in construction and packaging industry

Read more

Summary

Introduction

Internet of Things (IOT) is a conceptual vision to connect everyday things and all kinds of devices in order to create a ubiquitous computing world. It has a great potential e.g. in home automation, intelligent transportation, and healthcare [1,2]. Many industries are interested in novel smart products and great potential lies especially in construction and packaging industry, where wood and cardboard are typical materials. This makes integration of electronics and renewable materials an interesting research area

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.