Abstract

Sarcoplasmic reticulum dysfunction may contribute to calcium (Ca2+) overload during myocardial reperfusion. The aim of this study was to investigate its role in reperfusion injury. Open chest dogs undergoing 15 min of left anterior descending coronary artery occlusion and 3 h of reperfusion were randomized to intracoronary infusions of 0.9% saline, vehicle, or the Ca2+ channel antagonist, nifedipine (50 micrograms/min from 2 minutes before to 5 minutes after reperfusion). After each experiment, transmural myocardial biopsies were removed from ischemic/reperfused and nonischemic myocardium in the beating state and analyzed for (i) sarcoplasmic reticulum protein content (Ca2+ ATPase, phospholamban, and calsequestrin) by immunoblotting and (ii) Ca2+ uptake by sarcoplasmic reticulum vesicles with and without 300 micromolar ryanodine or the Ca2+ ATPase activator, antiphospholamban (2D12) antibody. Contractile function did not recover in controls and vehicle-treated dogs after ischemia and reperfusion (mean systolic shortening, -2 +/- 2%), but completely recovered in nifedipine-treated dogs (17 +/- 2%, p = NS vs. baseline, p < 0.01 vs. control). Ventricular fibrillation occurred in 50% of controls and vehicle dogs and 0% of nifedipine-treated dogs (p < 0.01). Ca2+ uptake by the sarcoplasmic reticulum vesicles was severely reduced in ischemic/reperfused myocardium of controls and vehicle dogs (p < 0.01 vs. nonischemic). Ryanodine and the 2D12 antibody improved, but did not reverse the low Ca2+ uptake. Protein content was similar in ischemic/reperfused and nonischemic myocardium. In contrast, Ca2+ uptake and the responses to ryanodine and 2D12 antibody were normal in ischemic/reperfused myocardium from nifedipine-treated dogs. Dysfunction of the sarcoplasmic reticulum Ca2+ ATPase pump correlates with reperfusion injury. Reactivation of Ca2+ channels at reperfusion contributed to Ca2+ pump dysfunction. Ca2+ pump injury may be a critical event in myocardial reperfusion injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.