Abstract

An injective edge-coloring [Formula: see text] of a graph [Formula: see text] is an edge-coloring such that if [Formula: see text], [Formula: see text], and [Formula: see text] are three consecutive edges in [Formula: see text] (they are consecutive if they form a path or a cycle of length three), then [Formula: see text] and [Formula: see text] receive different colors. The minimum integer [Formula: see text] such that, [Formula: see text] has an injective edge-coloring with [Formula: see text] colors, is called the injective chromatic index of [Formula: see text] ([Formula: see text]). This parameter was introduced by Cardoso et al. [Injective coloring of graphs, Filomat 33(19) (2019) 6411–6423, arXiv:1510.02626] motivated by the Packet Radio Network problem. They proved that computing [Formula: see text] of a graph [Formula: see text] is NP-hard. We give new upper bounds for this parameter and we present the relationships of the injective edge-coloring with other colorings of graphs. We study the injective edge-coloring of some classes of subcubic graphs. We prove that a subcubic bipartite graph has an injective chromatic index bounded by [Formula: see text]. We also prove that if [Formula: see text] is a subcubic graph with maximum average degree less than [Formula: see text] (respectively, [Formula: see text]), then [Formula: see text] admits an injective edge-coloring with at most 4 (respectively, [Formula: see text]) colors. Moreover, we establish a tight upper bound for subcubic outerplanar graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call