Abstract
An injective coloring of a graph is a vertex coloring where two vertices have distinct colors if a path of length two exists between them. In this paper some results on injective colorings of planar graphs with few colors are presented. We show that all planar graphs of girth ≥ 19 and maximum degree Δ are injectively Δ -colorable. We also show that all planar graphs of girth ≥ 10 are injectively ( Δ + 1 )-colorable, that Δ + 4 colors are sufficient for planar graphs of girth ≥ 5 if Δ is large enough, and that subcubic planar graphs of girth ≥ 7 are injectively 5-colorable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.