Abstract

Let k be an algebraically closed field of characteristic p > 0 and let G be a symplectic or general linear group over k. We consider induced modules for G under the assumption that p is bigger than the greatest hook length in the partitions involved. We give explicit constructions of left resolutions of induced modules by tilting modules. Furthermore, we give injective resolutions for induced modules in certain truncated categories. We show that the multiplicities of the indecomposable tilting and injective modules in these resolutions are the coefficients of certain Kazhdan-Lusztig polynomials. We also show that our truncated categories have a Kazhdan-Lusztig theory in the sense of Cline, Parshall and Scott. This builds further on work of Cox-De Visscher and Brundan-Stroppel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.