Abstract

We show that the term equivalence between MV-algebras and MV-semirings lifts to involutive residuated lattices and a class of semirings called involutive semirings. The semiring perspective leads to a necessary and sufficient condition for the interval [Formula: see text] to be a subalgebra of an involutive residuated lattice, where [Formula: see text] is the dualizing element. We also import some results and techniques of semimodule theory in the study of this class of semirings, generalizing results about injective and projective MV-semimodules. Indeed, we note that the involution plays a crucial role and that the results for MV-semirings are still true for involutive semirings whenever the Mundici functor is not involved. In particular, we prove that involution is a necessary and sufficient condition in order for projective and injective semimodules to coincide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.