Abstract
It will be shown that the word problem is undecidable for involutive residuated lattices, for finite involutive residuated lattices and certain related structures like residuated lattices. The proof relies on the fact that the monoid reduct of a group can be embedded as a monoid into a distributive involutive residuated lattice. Thus, results about groups by P. S. Novikov and W. W. Boone and about finite groups by A. M. Slobodskoi can be used. Furthermore, for any non-trivial lattice variety \( \user1{\mathcal{V}} \), the word problem is undecidable for those involutive residuated lattices and finite involutive residuated lattices whose lattice reducts belong to \( \user1{\mathcal{V}} \). In particular, the word problem is undecidable for modular and distributive involutive residuated lattices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.