Abstract
In this paper, after recalling the category {\bf PosAct}-$S$ of all poset acts over a pomonoid $S$; an $S$-act in the category {\bf Pos} of all posets, with action preserving monotone maps between them, some categorical properties of the category {\bf PosAct}-$S$ are considered. In particular, we describe limits and colimits such as products, coproducts, equalizers, coequalizers and etc. in this category. Also, several kinds of epimorphisms and monomorphisms are characterized in {\bf PosAct}-$S$. Finally, we study injectivity and projectivity in {\bf PosAct}-$S$ with respect to (regular) monomorphisms and (regular) epimorphisms, respectively, and see that although there is no non-trivial injective poset act with respect to monomorphisms, {\bf PosAct}-$S$ has enough regular injectives with respect to regular monomorphisms. Also, it is proved that regular injective poset acts are exactly retracts of cofree poset acts over complete posets.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.