Abstract

Purpose – The purpose of this paper is to describe a procedure to simulate impact-driven liquid jets by computational fluid dynamics (CFD). The proposed CFD model is used to investigate nozzle flow behavior under ultra-high injection pressure and jet velocities generated by the impact driven method (IDM). Design/methodology/approach – A CFD technique was employed to simulate the jet generation process. The injection process was simulated by using a two-phase flow mixture model, while the projectile motion was modeled the moving mesh technique. CFD results were compared with experimental results from jets generated by the IDM. Findings – The paper provides a procedure to simulate impact-driven liquid jets by CFD. The validation shows reasonable agreement to previous experimental results. The pressure fluctuations inside the nozzle cavity strongly affect the liquid jet formation. The average jet velocity and the injection pressure depends mainly on the impact momentum and the volume of liquid in the nozzle, while the nozzle flow behavior (pressure fluctuation) depends mainly on the liquid volume and the impact velocity. Research limitations/implications – Results may slightly deviate from the actual phenomena due to two assumptions which are the liquid compressibility depends only on the rate of change of pressure respected to the liquid volume and the super cavitation process in the generation process is not taken into account. Practical implications – Results from this study will be useful for further designs of the nozzle and impact conditions for applications of jet cutting, jet penetration, needle free injection, or any related areas. Originality/value – This study presents the first success of employing a commercial code with additional user defined function to calculate the complex phenomena in the nozzle flow and jet injection generated by the IDM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.